
Branch and Bound
Algorithms

(Procédure de Séparation et Évaluation)

Frédéric Devernay

The knapsack problem
• Input

• Capacity C

• n items with weights vi and values ai

• Goal

• Output a set of items S such that the sum of
weights of items in S is at most C and the
sum of values of items in S is maximized

• 0-1 knapsack : quantity of item i is 0 or 1

Solutions
• Construct a tree, where at each level i we have the different

values for the number xi of items of type i (at most C/vi)

• Explore all the solutions in the graph (à la N-queens), keep the
best... too costly!

• Apply greedy stategies

• Highest Density First

• Highest Value First

• Lowest Weight First

• Won’t work : the solution may not fall into these categories!

• Dynamic programming

• for special cases (e.g. the 0-1 knapsack problem, or when
weights are integers)

Knapsack example
• max(4x1+5x2+6x3+2x4) (ai = {4;5;6;2})

• 33x1+49x2+60x3+32x4≤130 (vi={33;49;60;32}, C=130)

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

Branch and Bound
• Branch and Bound is a general search method.

• Suppose we can easily evaluate upper- and lower- bounds
procedures to the minimization problem (i.e. solve a
relaxed problem)

• Starting by considering the root problem (the original
problem with the complete feasible region), the lower-
bounding and upper-bounding procedures are applied to
the root problem.

• If the bounds match, then an optimal solution has been
found and the procedure terminates.

Branch and Bound

• Otherwise, the feasible region is divided
into two or more regions, these
subproblems partition the feasible region.

• The algorithm is applied recursively to the
subproblems. If an optimal solution is found
to a subproblem, it is a feasible solution to
the full problem, but not necessarily globally
optimal.

Branch and Bound
• If the upper bound for a node is below the best

known feasible solution (we’re maximizing), no
globally optimal solution can exist in the subspace
of the feasible region represented by the node.
Therefore, the node can be removed from
consideration.

• The search proceeds until all nodes have been
solved or pruned, or until some specified
threshold is met between the best solution found
and the upper bounds on all unsolved
subproblems.

Branch and Bound: summary
• Initialization: best_so_far=-∞

• Iteration: Usually select most recent subproblem or
subproblem with best bound

1. Branch: divide to create two (or more) subproblems

2. Bound: obtain bound by solving the relaxation of each
subproblem (lower and upper bounds)

3. Fathom: eliminate subproblem if

• Relaxed solution is exact

• Upper bound < best_so_far (we’re maximizing)

• Relaxation infeasible

• Stop when no more subproblems

Branch and Bound
• Choice of the active child node :

• depth-first

• breadth-first (bad)

• best evaluation (total weight) first

• mixed : depth-first, followed by best
evaluation during backtracking

• If a node only has one child, evaluate the
child itself

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

12

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

14,4

13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

13,89

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

13,89

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

13,26 13,89

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

13,26 13,89

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }

Knapsack problem by dynamic
programming (integer vi only)

• consider all knapsack sizes from 1 to M

• cost[i] is the highest value that can be achieved with a knapsack of capacity i
and is initialised to zero;

• best[i] is the last item that was added to achieve that maximum. First we
calculate the best we can do only using objects of type 1 (j=1). Then we
calculate the best considering items of type 1 and 2 (using our result for just
type 1). And so on.

for j:=1 to N do {Go through each item}
 for i := 1 to M do begin {Consider each size knapsack}
 if i >= size[j] then
 if (cost[i] < cost[i-size[j]] + value[j]) then begin
 cost[i] := cost[i-size[j]] + value[j];
 best[i] := j
 end;

knapsack problem example

• item 1:

• cost[3]:=6; best[3]:=1

• cost[4]:=6; best[4]:=1

• item 2:

• cost[2]:=5; best[2]:=2

• cost[4]:=10; best[4]:=2

• item 3:

• cost[1]:=2; best[1]:=3

• cost[3]:=7; best[3]:=3

• end situation: cost = {2,5,7,10}, best = {3,2,3,2}

• backtracking gives best[4]=2, best[4-size[2]]=2

Item Size Value
1 3 6
2 2 5 bag size: 4
3 1 2

