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The knapsack problem
• Input

• Capacity C

• n items with weights vi and values ai

• Goal

• Output a set of items S such that the sum of 
weights of items in S is at most C and the 
sum of values of items in S is maximized

• 0-1 knapsack : quantity of item i is 0 or 1



Solutions
• Construct a tree, where at each level i we have the different 

values for the number xi of items of type i (at most C/vi)

• Explore all the solutions in the graph (à la N-queens), keep the 
best... too costly!

• Apply greedy stategies

• Highest Density First

• Highest Value First

• Lowest Weight First

• Won’t work : the solution may not fall into these categories!

• Dynamic programming

• for special cases (e.g. the 0-1 knapsack problem, or when 
weights are integers)



Knapsack example
• max(4x1+5x2+6x3+2x4) (ai = {4;5;6;2})

• 33x1+49x2+60x3+32x4≤130 (vi={33;49;60;32}, C=130)

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0



Branch and Bound
• Branch and Bound is a general search method. 

• Suppose we can easily evaluate upper- and lower- bounds 
procedures to the minimization problem (i.e. solve a 
relaxed problem)

• Starting by considering the root problem (the original 
problem with the complete feasible region), the lower-
bounding and upper-bounding procedures are applied to 
the root problem.

• If the bounds match, then an optimal solution has been 
found and the procedure terminates. 



Branch and Bound

• Otherwise, the feasible region is divided 
into two or more regions, these 
subproblems partition the feasible region. 

• The algorithm is applied recursively to the 
subproblems. If an optimal solution is found 
to a subproblem, it is a feasible solution to 
the full problem, but not necessarily globally 
optimal.



Branch and Bound
• If the upper bound for a node is below the best 

known feasible solution (we’re maximizing), no 
globally optimal solution can exist in the subspace 
of the feasible region represented by the node. 
Therefore, the node can be removed from 
consideration. 

• The search proceeds until all nodes have been 
solved or pruned, or until some specified 
threshold is met between the best solution found 
and the upper bounds on all unsolved 
subproblems. 



Branch and Bound: summary
• Initialization: best_so_far=-∞

• Iteration: Usually select most recent subproblem or 
subproblem with best bound

1. Branch: divide to create two (or more) subproblems

2. Bound: obtain bound by solving the relaxation of each 
subproblem (lower and upper bounds)

3. Fathom: eliminate subproblem if

• Relaxed solution is exact

• Upper bound < best_so_far (we’re maximizing)

• Relaxation infeasible

• Stop when no more subproblems



Branch and Bound
• Choice of the active child node :

• depth-first

• breadth-first (bad)

• best evaluation (total weight) first

• mixed : depth-first, followed by best 
evaluation during backtracking

• If a node only has one child, evaluate the 
child itself



Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }
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• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3
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x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0
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0.1212;
0.1020;
0.1000;
0.0625 }



Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1
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x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0
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ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }



Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1
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Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

14,4

13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }



Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }



Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }



Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

13,89

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }



Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

13,89

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }



Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

13,26 13,89

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }



Knapsack example
• max(4.x1+5.x2+6.x3+2.x4) (ai={4;5;6;2}, vi={33;49;60;32}, C=130)
• 33x1+49x2+60x3+32x4≤130, xi’s are sorted by ai/vi ratio

• upper bound: fill with the item with the highest ai/vi ratio

• ai’s are integer, so a better solution has to be ≥ best_so_far+1

x1=0 x1=2x1=1 x1=3

x2=0 x2=1 x2=2 x2=1x2=0 x2=1x2=0 x2=0

x3=0 x3=2 x3=0 x3=1 x3=0 x3=0 x3=1 x3=0 x3=0 x3=0 x3=0x3=1x3=1

x4=5 x4=3 x4=0 x4=3 x4=0 x4=1 x4=4 x4=1 x4=2 x4=2 x4=0 x4=0 x4=0

13,26 13,89

14,4

14 13 12

14,53

ai/vi = {
0.1212;
0.1020;
0.1000;
0.0625 }



Knapsack problem by dynamic 
programming (integer vi only)

• consider all knapsack sizes from 1 to M

• cost[i] is the highest value that can be achieved with a knapsack of capacity i 
and is initialised to zero;

• best[i] is the last item that was added to achieve that maximum. First we 
calculate the best we can do only using objects of type 1 (j=1). Then we 
calculate the best considering items of type 1 and 2 (using our result for just 
type 1). And so on.

for j:=1 to N do             {Go through each item}
   for i := 1 to M do begin  {Consider each size knapsack}
      if i >= size[j] then
         if (cost[i] < cost[i-size[j]] + value[j]) then begin
            cost[i] := cost[i-size[j]] + value[j];
            best[i] := j
         end;



knapsack problem example

• item 1:

• cost[3]:=6; best[3]:=1

• cost[4]:=6; best[4]:=1

• item 2:

• cost[2]:=5; best[2]:=2

• cost[4]:=10; best[4]:=2

• item 3:

• cost[1]:=2; best[1]:=3

• cost[3]:=7; best[3]:=3

• end situation: cost = {2,5,7,10}, best = {3,2,3,2}

• backtracking gives best[4]=2, best[4-size[2]]=2

Item  Size  Value
1     3     6
2     2     5      bag size: 4
3     1     2


